
CC-NIC: a Cache-Coherent Interface to the NIC
Henry N. Schuh

Google & University of Washington
USA

Arvind Krishnamurthy
Google & University of Washington

USA

David Culler
Google, USA

Henry M. Levy
Google & University of Washington

USA

Luigi Rizzo
Google, Italy

Samira Khan
Google & University of Virginia, USA

Brent E. Stephens
Google & University of Utah, USA

Abstract
Emerging interconnects make peripherals, such as the net-
work interface controller (NIC), accessible through the pro-
cessor’s cache hierarchy, allowing these devices to partici-
pate in the CPU cache coherence protocol. This is a funda-
mental change from the separate I/O data paths and read-
write transaction primitives of today’s PCIe NICs. Our exper-
iments show that the I/O data path characteristics cause NICs
to prioritize CPU efficiency at the expense of inflated latency,
an issue that can be mitigated by the emerging low-latency
coherent interconnects. But, the coherence abstraction is not
suited to current host-NIC access patterns. Applying existing
signaling mechanisms and data structure layouts in a cache-
coherent setting results in extraneous communication and
cache retention, limiting performance. Redesigning the inter-
face is necessary to minimize overheads and benefit from the
new interactions coherence enables. This work contributes
CC-NIC, a host-NIC interface design for coherent intercon-
nects. We model CC-NIC using Intel’s Ice Lake and Sapphire
Rapids UPI interconnects, demonstrating the potential of op-
timizing for coherence. Our results show a maximum packet
rate of 1.5Gpps and 980Gbps packet throughput. CC-NIC has
77% lower minimum latency, and 88% lower at 80% load, than
today’s PCIe NICs. We also demonstrate application-level
core savings. Finally, we show that CC-NIC’s benefits hold
across a range of interconnect performance characteristics.

ACM Reference Format:
Henry N. Schuh, Arvind Krishnamurthy, David Culler, Henry M.
Levy, Luigi Rizzo, Samira Khan, and Brent E. Stephens. 2024. CC-
NIC: a Cache-Coherent Interface to the NIC. In Proceedings of the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
ASPLOS ’24, April 27–May 1, 2024, San Diego, California, USA
© 2024 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

29th ACM International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, Volume 1 (ASPLOS
’24), April 27–May 1, 2024, San Diego, California, USA. ACM, New
York, NY, USA, 17 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction
A wide range of new interconnects is emerging for accelera-
tors, disaggregated memory, and multi-GPU systems. PCI Ex-
press (PCIe) [37] has long been the standard interconnect be-
tween a server and peripheral devices, such as the network in-
terface controller (NIC).While PCIe bandwidth has increased
substantially over the seven protocol generations, its inter-
face for host-device communication has remained consistent.
Now, new interconnect specifications [2, 3, 35, 36, 49, 50]
propose to either replace or build upon the PCIe physical
layer, while providing fundamentally different data paths
and communication abstractions between the host and the
peripheral.
A key attribute of these interconnects is allowing the

host and devices to participate in coherence protocols. Hosts
can access devices through the processor’s highly optimized
cache hierarchy, and devices can participate in the CPU’s
cache coherence protocol while accessing memory. These in-
terconnects enable devices to be integrated into the host pro-
cessor’s coherence domain in different settings. For instance,
Compute Express Link (CXL) [3] targets devices housed on
expansion cards, Ultra Path Interconnect (UPI) [9, 14] is an
inter-socket interconnect that also allows for the integration
of hardware devices (e.g., Intel Agilex FPGA [23, 39]), and
Cache Coherence Interconnect for Accelerators (CCIX) [2]
proposes a coherent interface for chiplet-based systems.
Coherent device access to shared memory is a powerful

programming model for data sharing, providing semantics
not available with the typical read/write primitives of PCIe
transactions. PCIe uses specialized data paths for transfers
between the CPU and the device: CPUs access devices using
memory-mapped I/O (MMIO) transfers that bypass the cache.
Devices access host state using direct memory access (DMA).
DMAs traditionally target data in host DRAM and place
DRAM on the critical path for device access, although newer
platforms add a limited form of cache interactions [15]. In

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ASPLOS ’24, April 27–May 1, 2024, San Diego, California, USA Schuh et al.

contrast, coherent interconnects integrate with the CPU’s
existing, highly-optimizedmemory data path. UPI, CCIX, and
CXL directly interface with the coherence protocol and the
L2 cache state, handling cache ownership and data transfers
to a peripheral. This not only results in a shorter data path to
the CPU core (as the device can target L2 instead of LLC or
DRAM) but also enables the device to poll locally on cache-
coherent state. Likewise, CPU accesses to the device can
utilize the caching memory path instead of MMIO.

Coherent interconnects thus represent a fundamental change
in host-device communication, offering new benefits and pos-
ing challenges. This paper aims to understand the value of
coherent interconnects in the context of NICs. While many
emerging interconnect specifications are in flux, we apply
existing UPI hardware as a means to explore cache-coherent
host-NIC interface designs and develop principles that could
apply across a range of interconnects.
We first study today’s PCIe-based NICs, identifying the

unique tradeoffs that PCIe imposes on NIC interfaces. PCIe
limits the use of shared data structures and imposes CPU
overheads for host-initiated interconnect operations. Today’s
NIC designs, therefore, aim to minimize host PCIe overheads
at the expense of transmission latency by introducing addi-
tional signaling trips and batching. The impact on packet
latency is significant: the host-NIC loopback latency on a
Mellanox CX6 NIC is 2.1us at low load and 6.0us at 80% load,
almost an order of magnitude higher than switch traversal.

The streamlined datapaths of coherent interconnects can
improve latency for existing NIC interface designs. But, we
observe performance is highly sensitive to the access pattern
on both sides. The producer-consumer patterns typical of
existing NIC interfaces incur significant overheads without
an optimized combination of access instructions, data own-
ership, and cache-line layout decisions. Achieving optimal
communication requires data structures specifically designed
for coherence. Finally, caching must be carefully managed;
data and metadata may be retained in remote caches longer
than needed, triggering expensive remote communication
upon a future local access. Thus, redesigning the host-NIC
interface is required to fully take advantage of coherent in-
terconnects, and doing so allows us to benefit from the new
signaling and sharing interactions made possible by coher-
ence.

We present CC-NIC, a host-NIC interface optimized for co-
herent interconnects. We redesign all aspects of the host-NIC
interface (namely, data structures, layouts, and signaling) to
take advantage of the new data paths and cache interactions
supported by coherent interconnects. To design CC-NIC,
we consider the space of access type, layout, homing, and
prefetching decisions, for each element of the interface. Our
redesign not only offers improved latency but also delegates
certain buffer management tasks to the NIC, thus reducing
host-side costs.

We demonstrate the performance of CC-NIC over UPI on
Intel’s Ice Lake and Sapphire Rapids server platforms. CC-
NIC demonstrates a packet rate of 1.5Gpps and a minimum
TX-RX latency of 494ns. Latency under 80% load is 716ns,
an even greater reduction relative to PCIe NICs. Compared
to an interface matching a current PCIe NIC, on the same
UPI link, our proposed design achieves a 3.3× throughput
improvement and 52% minimum latency reduction, in addi-
tion to decreased latency under load and terabit bandwidth
saturation. We evaluate key-value store and RPC workloads;
both show that CC-NIC saturates network bandwidth with
up to 50% fewer application threads versus PCIe NICs.

We present CC-NIC as a case study of optimizing coherent
host-device interactions. The design of CC-NIC can be ap-
plied to other coherent interconnects. Our evaluation shows
that CC-NIC’s design benefits hold, maintaining consistent
relative improvement, across varied interconnect perfor-
mance characteristics.

2 Dissecting the PCIe Host-NIC Interface
We first analyze the host-device interface of today’s PCIe
NICs. Our goal is to understand how the characteristics of
PCIe drive the interface design of existing NICs. In §2.1,
we describe the packet queue interface and its data struc-
tures in the context of PCIe. Then, in §2.2, we measure the
performance of PCIe access mechanisms. We discuss how
these performance characteristics lead to tradeoffs in §2.3–
the tradeoffs ultimately dictating the design of PCIe NIC
metadata structures, data transfer, and buffer management.

2.1 The Host-NIC Interface
In this section, we focus on packet transmit (TX) and receive
(RX) queues, the main transfer interface between host and
NIC. This interface is consistent across a wide range of NICs
and consists of the following components:

Packet buffers store the data payloads transmitted to
or received by the NIC. Buffers are pre-allocated memory
chunks. A pointer to each buffer is inserted into a buffer pool
data structure, typically a queue. Allocating and releasing
packet buffers involve dequeuing or enqueuing a pointer
from the buffer pool. Packet buffers also include application-
level metadata, e.g., length of the packet’s headers, etc. Al-
though the driver may use this metadata, it is not transferred
to the NIC. The address communicated to the device is the
start of the packet payload, which is typically cache-aligned
and placed after any application metadata.

Descriptors represent the work requests. Each descrip-
tor contains the address of a corresponding packet buffer.
Typical descriptors are 16B, including 8B of tightly-packed
metadata, such as the data length. They are organized into
a ring buffer implemented as a circular array. On the TX
path, the driver writes a descriptor for each submitted TX

CC-NIC: a Cache-Coherent Interface to the NIC ASPLOS ’24, April 27–May 1, 2024, San Diego, California, USA

Host

LLC

Device

Core BAR
Space

DRAM

WC Buf

SRAM

L2

LLC

Core

DRAM

L2

LLC

Core

DRAM

L2

(a) PCIe Transfer Paths (b) UPI Transfer Paths

L2 Hit
WritebackLLC HitLLC Miss

DMA

MMIO

Figure 1. PCIe (a) and UPI (b) transfer paths.

packet. The descriptor is derived from the driver’s configu-
ration state and the per-packet metadata in the TX buffer.
The address and packet length are critical components of
the TX descriptor; the NIC must have these values before
it can access the packet from the host. On the RX path, the
host first posts RX descriptors to provide the NIC with blank
packet buffers. After the NIC writes a received packet into
the RX buffer, it overwrites the descriptor with RX metadata
(e.g., completion status).

Head and tail registers serve as signals to coordinate
the producer-consumer relationship between the host and
NIC. Registers are typically 32 or 64-bit values representing
the producer and consumer positions of the ring array. Af-
ter writing a TX descriptor, the host makes the descriptor
available to the NIC by incrementing the TX tail register.
When the NIC receives the tail value, it reads and handles
packet descriptors up to the new tail index. After the NIC
transmits a packet, it signals completion to the host by incre-
menting the TX head. The host handles transmit completions
by returning the freed packets to the buffer pool, reclaiming
descriptor ring space.
For the receive path, the host allocates blank RX buffers

from the pool, writes their addresses to the RX descriptor
ring, and then increments RX head to signal the presence of
new RX buffers. When the NIC receives packet data, it uses
blank RX buffers at the RX tail index and notifies the host of
RX packet availability by incrementing the RX tail. The host
handles descriptors up to the RX tail index by returning the
RX buffers to the application. In summary, the host writes
the TX tail to submit TX packets to the NIC and writes the
RX head to submit blank buffers to the NIC. The NIC writes
the TX head to indicate transmit completions and writes the
RX tail to indicate newly received packets.

2.2 PCIe Microbenchmarks
We now perform a measurement characterization of host-
device accesses to understand how PCIe performance dic-
tates host-NIC interface designs. While existing work has
identified PCIe limitations [7, 32, 42, 43, 54], we aim to un-
derstand the extent to which performance limitations hold
on current server platforms and NIC interfaces.

PCIe interconnect latency. PCIe presents an asymmetric
interface to the device and the host. Figure 1a shows the
mechanisms for transfers initiated by the host and by the
device: MMIO and DMA, respectively.

Host-to-NIC reads and writes are performed via memory-
mapped IO (MMIO). The device exposes a memory area
mapped into the host address space as an uncacheable (UC)
or write-combining (WC) memory type. This allows the host
to issue loads and stores to the device, which are executed as
PCIe read and write transactions. The UC and WC memory
types do not provide cache coherence or operate within the
cache hierarchy. Instead, CPU loads always require a PCIe
roundtrip, resulting in expensive accesses. On the ICX CPU
platform, targeting an Intel E810 NIC (testbed described in
§5.1), we measure a median MMIO read latency of 982ns (8B)
and 1026ns (64B AVX512).
PCIe devices read and write host memory using Direct

Memory Access (DMA). DMAs may be significantly larger
(e.g., 4KB) than the 64B MMIO write-combining buffer size
and typically access standard writeback host memory. While
conventional PCIe NICs do not expose DMA latency statis-
tics, we expect DMA roundtrip latency to be comparable
to that of MMIO. SmartNICs that provide a low-level DMA
controller interface, such as Marvell’s LiquidIO [27], show a
minimum DMA read latency of at least 1𝜇s [25, 44].

Implication: The high latency of MMIO and DMA accesses
suggests that each PCIe roundtrip contributes significantly
to overall packet latency. Host-NIC data structures should
also be designed to minimize high-cost CPU operations such
as polling or reading across the PCIe bus (MMIO loads).

MMIOwrite throughput. Unlike loads, MMIO stores are
posted, so a store does not incur a PCIe roundtrip delay from
the host’s perspective. However, MMIO writes are still ex-
pensive in the context of both UC and WC memory types.
The UC memory type bypasses host caches altogether, so
each MMIO access results in a PCIe transfer. To preserve
ordering, only one MMIO access may be in flight between
the CPU core and PCIe root, thus limiting throughput. The
WCmemory type offers more flexibility via write-combining
store buffers, which can merge contiguous stores within a
64B-aligned region into a single PCIe transfer. This can re-
duce PCIe protocol overhead but complicates write ordering
since writes may be buffered for an arbitrary time before
being flushed. To ensure writes are flushed, it is necessary
to issue a fence instruction, e.g., sfence, or ensure that each
64B buffer is completely filled in sequential order. These flush
conditions make it difficult to achieve fine-grained control
over PCIe write ordering.
Figure 2 compares the write throughput of WC MMIO

accesses to a device, WC-mapped local DRAM, and write-
back DRAM. We run this experiment on the ICX platform,
targeting the E810 NIC for MMIO accesses using a single

ASPLOS ’24, April 27–May 1, 2024, San Diego, California, USA Schuh et al.

64 128 256 512 1K 2K 4K 8K
Write Size per Barrier [B]

0

50

100

Th
ro

ug
hp

ut
 [G

bp
s]

WC MMIO
WC DRAM
WB DRAM

Figure 2. Single-threaded write throughput for WC MMIO
(to E810 NIC), WC-mapped DRAM, and regular WB DRAM.

thread. We repeat the experiment with write sizes between
64B and 8KB, issuing an sfence barrier after each write.
With the WC data path, writing to both PCIe MMIO and

DRAM, we find that the barriers, which may be needed to
ensure ordering, impact throughput. This is not the case with
WB DRAM, where throughput is consistent regardless of
barrier frequency. Our results suggest that the MMIO WC
data path cannot achieve high throughput without exten-
sive batching. Near-maximum single-threaded throughput
requires writing at least 4KB per barrier; with 64B packets,
this means a batching factor of 64. This batched throughput
is still only 76% of singleton 64B WB performance.
Implication: The WC and UC data paths are throughput-

limited relative to standard write-back memory. Our mea-
surements represent a NIC design that uses MMIO for bulk
data/metadata transfer, unlike the signaling-only MMIO op-
erations of current NICs. For streaming writes using the WC
datapath, the barriers required to ensure ordering and flush
to the device limit throughput.

MMIO write-combining latency. WC memory also in-
troduces the limitation of a fixed number of store buffers.
When all WC buffers are occupied, issuing a store within
a 64B region not already buffered results in stalling until a
buffer is flushed. Figure 3 shows the cumulative latency of 𝑁
32-bit MMIO stores to the E810 and CX6 NICs, up to 𝑁 = 64.
Latency remains uniform and low (< 20ns) until 𝑁 = 24,
where all WC buffers are utilized for the 𝑁 stores. Beyond
that, store latency is at least 15× greater and increases with
𝑁 , as store buffers are flushed on the critical path.

Implication: When the MMIO data path is used for bursts
of small stores, limited store buffer availability leads to expen-
sive, high-latency accesses. This represents a NIC interface
design that applies MMIO stores for metadata transfer, e.g.,
submitting descriptors to the device.

2.3 PCIe NIC Interface Design
The nature of PCIe and its performance characteristics im-
pose constraints on the host-NIC interface. We identify three
issues:
1. Since PCIe is not a coherent interconnect, local data struc-

ture updates must be communicated or signaled with
explicit PCIe transactions.

1 2 4 8 16 24 32 40 48 56 64
Store Count

0

5

10

15

20

La
te

nc
y

[μ
s]

E810
CX6

Figure 3. MMIO store latency versus iteration count for
PCIe 4.0 ×16, from Ice Lake host to CX6 and E810 NICs.

2. PCIe operations incur high latency, so reducing the num-
ber of interconnect traversals is critical to achieving low-
latency packet transmissions (§2.2).

3. Data and metadata writes over PCIe are expensive for
the CPU in terms of both throughput and high-latency
stalls (§2.2, §2.2).
The above issues define the performance tradeoffs im-

posed by the PCIe interface. An ideal design would achieve
high packet throughput, low latency, and high CPU effi-
ciency, but the PCIe prevents us from achieving all three
goals simultaneously. Today’s PCIe NICs prioritize CPU effi-
ciency and throughput at the expense of latency by making
the following design decisions:

Data structures are host-local, and updates are ex-
plicitly signaled. The host maintains packet buffers and
descriptor rings in its local memory (as opposed to device
MMIO) to reduce the CPU overheads for data structure ac-
cess and updates. Requests to transmit a packet and newly
received packets are signaled explicitly to the NIC. Other ar-
rangements (e.g., host or NIC polling across the PCIe) waste
PCIe bandwidth for each polling access and consequently are
not used. For instance, in the transmit path, the host writes
TX packets and TX descriptors into host memory and writes
only a TX signal to the queue tail register maintained on
the device side via MMIO. This results in a tradeoff: minimal
data transfer over MMIO at the cost of extra interconnect
roundtrips to read descriptors and packets from host mem-
ory.1

Descriptor transfer is batched.Given the host-side CPU
stalls for MMIO writes to uncacheable NIC-side registers, the
host may enqueue a large group of descriptors per MMIO
register signal. This batching optimization again trades off
latency for CPU efficiency.

The host handles all buffer management. The PCIe
read-write interface, without cache coherence, limits the
sharing of data structures between host and NIC. The syn-
chronization mechanisms that support multi-core pool ac-
cesses are incompatible with PCIe reads and writes. Thus,

1Some NICs, e.g., the CX6, implement an alternative data path that writes
descriptors over MMIO; however, this is typically enabled only for low-
throughput, latency-critical workloads.

CC-NIC: a Cache-Coherent Interface to the NIC ASPLOS ’24, April 27–May 1, 2024, San Diego, California, USA

the host performs all buffer management. This includes pre-
allocating RX buffers to be used by the NIC and freeing
completed TX buffers after NIC transmission. This results
in additional bookkeeping communication over PCIe and
also limits the NIC from performing memory optimizations
based on the properties (such as size) of received packets.
In the Evaluation, §5.3, we provide end-to-end measure-

ments of PCIe NIC latency, throughput, and core utilization.

3 System Design for Coherent
Interconnects

In this section, we describe the design of CC-NIC, a host-
NIC interface optimized for cache-coherent interconnects
such as UPI. First, in §3.1, we contrast a cache-coherent
interconnect with PCIe, given our analysis of today’s NIC
interface designs. Then, we discuss the CC-NIC design in
terms of metadata structures (§3.2), data accesses (§3.3), and
packet buffer management (§3.4).

We present the design of CC-NIC as a series of empirically-
backed design decisions, with the eventual design having
the following desirable properties: (1) low-latency packet
transmissions through the use of cache-to-cache transfers
and hardware-supported signaling, (2) high throughput for
data and descriptor communications using the efficient write-
back datapath, and (3) reduced CPU management overheads
realized by sharing buffer management and optimizing buffer
placements for both TX and RX paths. Figure 4 compares the
TX path for the CC-NIC interface with that of a PCIe NIC.

CC-NIC provides a data plane interface analogous toDPDK’s
mempool and ethdev APIs, with burst semantics to enable
batched TX/RX and buffer management operations. Figure 5
shows the core software interface.

3.1 Contrasting Coherent Interconnects and PCIe
Coherent interconnects, such as UPI and CXL, are tightly in-
tegratedwith the CPU’smemory data paths. Cross-interconnect
accesses may target DRAM and caches (see Figure 1b). The
coherence protocol manages shared cache state, transferring
lines into local caches when memory is accessed. The proto-
col ensures a writer gains exclusive control of a cache line
before writing, invalidating any copies in remote caches. The
protocol allows multiple caches to share reader access to a
line, and lines may be forwarded between caches.
Overall, coherent interconnects provide a fundamentally

different interface from PCIe. The coherence abstraction
enables new forms of signaling and data structure sharing
without the constraints of the PCIe read and write interfaces.
Coherent interconnects integrate with the memory datapath
and cache hierarchy, unlike PCIe MMIO, and also provide a
symmetric interface, avoiding the tradeoffs between MMIO
and DMA operations. However, cross-interconnect transfers
depend on cache presence and coherence states, in terms
of latency, memory controller requests, protocol metadata

overhead, and roundtrips. There are limited means of ma-
nipulating these cache line states and caching behavior in
general. As a result, implementing NIC data structures in the
context of a coherent interconnect leads to both opportuni-
ties and challenges. We identify three factors that call for a
different design:

1.Coherence enables interface signaling and shared
data structures. PCIe NICs typically implement TX signal-
ing with a separate mechanism, MMIO, from data and meta-
data DMA transfers. This results in an extra interconnect
roundtrip to retrieve TX metadata via DMA after receiving
the signal. Cache coherence performs signaling in hardware:
when the remote side performs a write, the coherence proto-
col will invalidate any locally cached copy and fetch the new
value upon subsequent access. Further, a coherent intercon-
nect also enables the use of shared data structures between
host and NIC, thus allowing for shared management of the
buffer pool.

2.CC-NIChas to choose betweendifferent data trans-
fer mechanisms and homing options. Coherent inter-
connects provide a diverse set of transfer mechanisms. For
instance, CC-NIC can target write-back memory in addi-
tion to the cache-bypass data path and home data structures
on either the host or the NIC, thus providing it with mul-
tiple transfer options to choose from. Cross-interconnect
data transfers and cache state transitions also depend on the
current cache residency of an object, possible prefetching,
and the cache states caused by previous accesses. As a re-
sult, small objects, e.g., signals and descriptor metadata, are
highly sensitive to layout.

3.CC-NIC has to carefully manage caching. The co-
herence protocol exchanges cache line ownership across the
interconnect. Therefore, a remote access may result in addi-
tional communication when a later local access is performed.
This is specifically problematic for producer-consumer work-
loads. For instance, the typical TX path transfers metadata
and data from the host to the NIC, then the NIC performs
the data transmission, and the data is not needed again by
the NIC. In the coherent interconnect context, retaining the
packet buffer or descriptor in the NIC-side cache is unhelp-
ful; it adds overhead to subsequent host accesses that would
have to perform remote cache invalidations. This suggests
that minimizing overhead requires selectively invalidating
cached data, which is unsupported on typical x86 platforms,
or re-designing the data structures to avoid this access pat-
tern.

3.2 Metadata Structures
In this section, we discuss the key questions that inform
CC-NIC’s handling of metadata, such as TX/RX descriptors.

How can we take advantage of cache coherence to re-
duce software overhead? Cache-coherent interconnects pro-
vide an underlying hardware mechanism to transfer and

ASPLOS ’24, April 27–May 1, 2024, San Diego, California, USA Schuh et al.

CC-NICCPUDRAM

Cache

TXD … …

Buf
Cache

NIC Agent

DRAM

Buf
TXD Co

he
re

nt

In
te

rc
on

ne
ct

Co
he

re
nt

In

te
rc

on
ne

ct

Host Core
1 2

4
3

5

4
3

5

PCIe NICCPU

WC Buf

Cache

PCIe

TXD

Tail

Head
… …

Buf

Register
BAR Space

Tail
NIC

Agent
SRAM

1

DRAM

Host Core
2

3

4
5

6 3

7 Local Access
PCIe MMIO Wr
PCIe DMA Rd
PCIe DMA Wr
Cache Transfer

(a) PCIe NIC TX Accesses (b) CC-NIC TX Accesses

Figure 4. Comparison of TX path accesses for (a) the Intel E810, and (b) the CC-NIC interface. Numbers denote access order.

int ccnic_buf_alloc(struct ccnic_pool *pool,
struct ccnic_buf **bufs, unsigned count);

void ccnic_buf_free(struct ccnic_pool *pool,
struct ccnic_buf **bufs, unsigned count);

int ccnic_tx_burst(int txq_index,
struct ccnic_buf **bufs, unsigned count);

int ccnic_rx_burst(int rxq_index,
struct ccnic_buf **bufs, unsigned count);

Figure 5. The core CC-NIC data plane interface, maintaining
the semantics of DPDK mempool and ethdev APIs.

Host NICCache Cache
Wr TXD

Wr tail

Rd head

Rd tail

Rd TXD

Wr head

Host NICCache Cache

Wr TXD

Rd TXD

Rd TXD

Clear TXD

(a) Head/Tail Registers (b) Inlined Signals

Figure 6. Signaling communication with (a) registers, and
(b) signals inlined in the descriptor. Dotted lines represent
coherence metadata.

signal the availability of new data, via cache state transi-
tions. This avoids the need for software-based signaling via
head and tail index registers. To this end, CC-NIC applies
an inlined signal in the descriptor, implemented as a flag
indicating whether the descriptor is ready for consumption
or free. Integrating the signal and descriptor eliminates a
cache line transfer per signal and saves a cross-socket cache
line access delay, as shown in Figure 6. For transmission,
instead of polling a register containing the queue tail index,
the NIC polls the next descriptor in the ring. The descrip-
tor metadata includes a ready flag, which the host sets after
other descriptor fields are written. Once the flag is set, the
NIC receives the signal and the descriptor content in one
access.

Event-driven implementation. A coherent NIC ASIC
could further optimize signaling communication by directly
handling coherence protocol messages. Instead of access-
ing descriptors through the cache polling abstraction, the

L DRAM R DRAM L L2 R L2 (rh) R L2 (lh)
Access Target

100

200

La
te

nc
y

[n
s]

108

191

82

171 174

72

144

48

114 119 SPR
ICX

Figure 7. Local and cross-UPI access latency for Sapphire
Rapids and Ice Lake hosts with various cache states.

device would directly take action in response to snoop mes-
sages received over the interconnect. Handling the coher-
ence messages as signals avoids the scalability limitations of
software-based polling in the presence of large queue counts.

What is the ideal data path for metadata transfers?
Since a coherent interconnect may retrieve data from DRAM
or multiple levels of the cache hierarchy, we measure the per-
formance of each transfer case to understand performance
implications for signaling communication. Figure 7 shows
the median access latency of a 64B-aligned object in various
cache states for both local and remote (cross-UPI) memory
on Ice Lake (ICX) and Sapphire Rapids (SPR) server plat-
forms. We find that accessing remote uncached DRAM in-
curs approximately twice the latency of local DRAM access.
Accessing data cached in remote L2 is faster: 171ns on SPR
and 114ns on ICX for memory homed on the remote socket
(rh case), and slightly higher for memory homed on the local
socket (lh). In these cases, the remote CPU has written to
and retained a line in its L2 cache in the M (modified) state,
and then the local reader accesses the address. When an
M-state object exists in a remote L2 cache, it cannot exist
in any other L2, so there is always a local L2 miss. With
reader-homed memory, the reader’s L2 miss causes a spec-
ulative memory read in addition to the remote request to
the writer’s cache. This speculative read is unneeded and
causes lower performance when an object is reader-homed,
increasing bus utilization with spurious traffic. Regardless of
homing, remote L2 accesses are faster than a remote DRAM
access, suggesting that cache-to-cache transfers achieve the
best-case latency.

CC-NIC applies these observations in its design. CC-NIC
places metadata structures in writer-homed memory: the TX

CC-NIC: a Cache-Coherent Interface to the NIC ASPLOS ’24, April 27–May 1, 2024, San Diego, California, USA

S0 S1 Rd Wr S0C S1C
Homing

0

250

500

750

1000

La
te

nc
y

[n
s]

SPR
ICX

Figure 8.UPI pingpong experiment showing median latency
with different memory layout choices.

descriptor ring is host-homed, and the RX ring is NIC-homed.
It enhances the possibility of cache-to-cache transfers by
utilizing write-back memory with regular caching accesses
instead of nontemporal stores that target memory. However,
the working set size of the NIC interface affects performance,
as do prefetch accesses (see §3.3).

How does memory layout affect metadata? NIC meta-
data, such as descriptors and signals, exhibit a producer-
consumer access pattern in which each descriptor is written
by one side and read by the other. For instance, TXDs are
written by the host and RXDs by the NIC. Performance de-
pends on the access pattern of a cache line, as this determines
the protocol communication necessary to ensure coherence.

We use a pingpong microbenchmark to analyze producer-
consumer accesses. We run a single thread on both sockets,
accessing two shared 64-bit registers. The first thread in-
crements the first value, while the second thread polls. The
polling thread increments the second register after reading
the updated value. We report roundtrip time, from writing
the first register to reading the same value in the second
register. Figure 8 shows median latency with both registers
allocated in separate cache lines; both homed on the same
socket (S0/S1 cases); both homed on the respective read-
er/writer sockets (Rd/Wr); and both co-located on one cache
line (S0C/S1C). In the S0/S1 and Rd/Wr cases, each register
exists on a separate cache line written by one CPU and read
by the other. These correspond to PCIe NIC signaling, where
host-to-NIC registers exist in the MMIO address space and
NIC-to-host registers in write-back memory.

With separate cache lines, we find that writer-homedmem-
ory yields the lowest latency, consistent with Figure 7. These
scenarios all show 1.7 − 2.4× higher latency than when the
values are on one cache line, homed on either socket. Co-
locating producer and consumer structures on a single cache
line achieves the best overall latency. With separate cache
lines, each read transfers a cache line over the interconnect,
and each write incurs another roundtrip to invalidate the
reader cache. The co-located case instead uses one cache
line for two-way communication. The 1.7 − 2.4× latency
difference shows the benefit of applying memory layouts
that enable this two-way communication. Measuring offcore
response perf counters shows a reduction of remote-socket

1 2 4 8 16 24 32 40 48 56
Core Count

0

250

500

750

1000

Th
ro

ug
hp

ut
 [G

bp
s]

SPR caching
SPR nontmp
ICX caching
ICX nontmp

Figure 9. Stream transfer experiment comparing UPI
throughput with caching and nontemporal accesses.

requests from 4 to 2 per pingpong. This indicates reduced
interconnect utilization in addition to improved latency.
CC-NIC applies two-way communication for signaling

and descriptor transfers. Unlike the PCIe head and tail reg-
ister layout, the host and NIC communicate by writing and
clearing each descriptor and its inlined signal. This results in
an access pattern matching the minimum pingpong latency.

How do we optimize for both latency-sensitive and
high-bandwidth regimes? With inlined signaling, the host
and NIC directly poll descriptor ring memory rather than
separate registers. This results in the cache line thrashing
between sockets when writing and polling a series of descrip-
tors smaller than the 64B cache line. This thrashing increases
latency compared to a cache-aligned case where descriptors
are padded to 64B. Cache-aligned descriptors result in sig-
nificant wasted space (e.g., 48 out of 64B), impacting the
maximum packet rate. Furthermore, both scenarios prevent
batching multiple descriptors per signal, a technique existing
NICs typically rely on to maximize packet rate. To address
these tradeoffs, CC-NIC implements a balanced solution: it
packs bursts of up to 4× 16B descriptors into a cache line,
with unused entries zeroed out, and uses one signal per cache
line. If the consumer reaches a blank descriptor in the middle
of a group, it skips to the next cache line to poll for the subse-
quent descriptor group. This eliminates wasted space in the
high-throughput case while avoiding thrashing in the low-
throughput, un-batched case. With one signal per descriptor
group, CC-NIC applies batching to utilize each descriptor
cache line fully in high-throughput scenarios.

3.3 Data Accesses
Next, we discuss the questions guiding the design of packet
data transfer in CC-NIC.

How should we write packet data? We run a streaming
write microbenchmark to compare caching and nontemporal
store throughput. For each case, we run awriter thread on the
local CPU and a reader thread on the remote CPU. The writer
thread sequentially writes data to a shared memory region,
signaling the reader via a register for each 1MB written. The
reader accesses 1MB per signal, copying into a thread-local
buffer. We run a copy of the workload on each pair of threads,

ASPLOS ’24, April 27–May 1, 2024, San Diego, California, USA Schuh et al.

up to all 16 ICX and 56 SPR cores. Figure 9 shows the results
using two access types. In the caching case, the writer applies
cacheable stores, which follow the typical memory datapath
and enter the cache. This results in cross-interconnect cache
transfers from the writer to the reader. In the nontemporal
case, the writer uses cache-bypassing nontemporal stores
to target reader-socket DRAM. This case aligns with the
PCIe MMIO datapath, where stores are submitted over the
interconnect directly without entering the cache. Our results
show that the cache-to-cache transfer path enables higher
throughput on both platforms: 1.8× (ICX) and 1.6× (SPR).

Additionally, we measure the maximum achievable inter-
connect throughput on our platforms using the Intel mlc
benchmark utility [17]. This measurement uses a read-only
remote access workload, which shows higher throughput
than other patterns. On SPR and ICX, we find a maximum
data throughput of 1020Gbps and 443Gbps, respectively. This
suggests that the reader-writer streaming workload reaches
91% of best-case read-only throughput by using cache-to-
cache transfers.
Based on this result, we apply caching stores to write

packet data, both at the host application (while generating
TX packets) and at the CC-NIC (while writing inbound RX
packets).

How can we minimize coherence protocol overhead
for data transfers? Packet buffers also demonstrate the
producer-consumer access pattern described in §3.2; NIC’s
TX buffer accesses are read-only, and RX buffer accesses are
write-only. Like descriptors, performance depends on under-
lying coherence state transitions. After the NIC completes
a packet transmission, the buffer is likely to remain in the
NIC’s local cache. Although the buffer contents are no longer
needed by the NIC, when the buffer is next allocated on the
host side, writing to the buffer memory requires cross-socket
access to invalidate this unnecessarily cached data.
There is no ideal instruction available to purge the con-

sumed buffer memory out of the consumer-side cache. While
CLFLUSHOPT does trigger cache invalidation, it is an expen-
sive instruction that must be called on a per-cache-line basis
and may incur memory accesses after the invalidation. Other
cache control instructions, such as CLWB, do not help, as they
do not result in cache invalidation.
Instead, CC-NIC implements a buffer recycling allocator

to reuse the most recently freed TX buffers as RX buffers
and vice versa. In both cases, the goal is to allocate buffer
memory still present in the writer’s cache. CC-NIC’s buffer
recycling provides similar application-level semantics to the
TX-RX buffer reuse implemented by some PCIe NIC drivers
(such as the i40e kernel driver [48]). However, these existing
mechanisms are software-only driver optimizations and thus
do not affect interconnect communication. CC-NIC’s buffer
recycling takes place at both the NIC and the host, and ad-
dresses the unique producer-consumer overheads imposed

by cache coherence. We implement buffer recycling using
host- and NIC-local stacks, which cache free buffer addresses
from the pool of packet buffer memory. This technique is
suitable for applications with a single buffer pool for TX
and RX traffic, the typical design pattern among DPDK NIC
drivers. But, in cases where there are multiple references to
the TX buffer payload, and the host retains the TX buffer
after transmission (e.g., for potential retransmission), this
optimization falls back to standard buffer allocate/release
behavior. The CC-NIC buffer allocator is described fully in
§3.4.

Where should data be homed? Our measurements of
remote-socket accesses, in §3.2, demonstrate a latency ben-
efit to homing memory on the writer socket. As a result,
CC-NIC places the TX descriptor ring on the host socket and
the RX ring in NIC memory. However, we allocate packet
buffer memory entirely homed on the host. Since applica-
tions may arbitrarily access packet buffer data, placing it
in remote memory could have unexpected application-level
consequences. Applications may, for instance, submit RX
buffers to a TX queue, so writer-homing does not universally
apply to packet buffer memory. Instead, CC-NIC’s recycling
buffer allocation policy and locality-oriented optimizations,
described next, aim to minimize the cost of host and NIC
buffer accesses.

How can we maximize cache locality for packets? As
measured in §3.2, maximum remote access performance is
achieved when an object is present in remote cache. As such,
it is important to maximize the caching of shared data on
both the host and NIC sides. Using small packet buffer sizes
for small packets reduces the overall memory footprint of
the NIC interface. When supported by the application, an
MTU-sized buffer, for instance, 4KB, is subdivided into 32×
128B packet buffers. When the host allocates a buffer to write
a TX packet, it selects either a large or small buffer based
on the packet data size, if known in advance. The RX side
follows the same logic (see §3.4). This increases the cache
efficiency of small packet transfers. Unlike PCIe NIC drivers,
which may inline packet data into the descriptor ring, this
approach does not require copying the packet data payload
into another location.
Relative to PCIe, cache coherence brings the additional

challenge of potential remote prefetching. When buffers are
allocated sequentially from a contiguous region of mem-
ory, the sequential access pattern on the consumer side may
result in hardware prefetching of the buffer memory just
beyond the current packet buffer. These remote prefetches
contend with local writes of that same packet buffer before
it is submitted to the descriptor ring. This behavior occurs
when the NIC handles one posted TX buffer and prefetches
subsequent buffer memory while the host is writing to the
next buffer allocated sequentially in memory. We avoid this
contention by filling the memory pool with buffers such that

CC-NIC: a Cache-Coherent Interface to the NIC ASPLOS ’24, April 27–May 1, 2024, San Diego, California, USA

PoolPoolPool TX

RX

♺

Buf

♺

Buf Buf

BufBuf
(a) PCIe NIC

Buf

PoolPoolPool

Buf

TX

RX

(b) CC-NIC

Figure 10. Buffer management approaches. Thin lines de-
note buffer allocation/release; thick lines denote buffer data
transfer.

repeated buffer allocations do not yield sequential memory
addresses. This policy avoids unwanted cache state transi-
tions, increasing the efficiency of producer-side packet buffer
writes.

3.4 Buffer Management
Several of the above design features, including the recycling
buffer allocator (§3.3), subdividing buffers for small packets
(§3.3), and cache-aligned descriptor groups (§3.2), are critical
to CC-NIC’s efficient utilization of the interconnect. Each of
these optimizations requires allocating buffers and writing
RX descriptors based on the properties of the workload. In
a typical PCIe NIC interface, RX buffers are allocated and
posted to RX descriptors by the host prior to the actual recep-
tion of packets by the NIC. This makes it impossible to apply
knowledge of the RX packet burst at the time of assigning
buffers to RX descriptors. CC-NIC overcomes this by taking
advantage of cache coherence to share the responsibility of
buffer management with the host. Cache coherence allows
the host and NIC to access the buffer pool data structure
concurrently without the restrictions associated with simul-
taneous PCIe DMA and CPU accesses (e.g., lack of atomic
operations). A shared buffer pool structure allows the NIC
to release TX buffers to the pool after transmission. Like-
wise, the NIC can allocate RX buffers on demand and write
their addresses into the RX descriptor ring. This results in
a symmetric design that avoids extra bookkeeping passes
over the queues to free completed TX packet buffers and
post blank RX packet buffers. Finally, shared buffer man-
agement enables CC-NIC’s buffer allocation and descriptor
layout optimizations. Figure 10 compares CC-NIC’s buffer
management design to that of PCIe NICs.

4 CC-NIC Implementation
To demonstrate the benefits of the CC-NIC design, we imple-
mented CC-NIC on a dual-socket server where one socket
acts as a software NIC. In this implementation, all host-NIC
communication occurs over the UPI interface. In addition to
being a coherent interconnect that we can experiment with
now, UPI also provides bandwidth higher than contempo-
rary PCIe generations (see Table 1). Sapphire Rapids CPUs

Protocol GT/s 1 Link GB/s Max Total GB/s
PCIe 4.0 16 2.0 31.5 (×16)
PCIe 5.0, CXL 1.0-2.0 32 3.9 63.0 (×16)
PCIe 6.0, CXL 3.0 64 7.6 121 (×16)
Ice Lake UPI 11.2 22.4 67.2 (×3)
Sapphire Rapids UPI 16 48 192 (×4)

Table 1. Comparison of PCIe, CXL, and UPI bandwidth.

provide a terabit-throughput UPI interface, allowing us to
model terabit NIC communication.

We designate one CPU and its local-socket memory as the
host and the second socket as the NIC. NIC-socket memory
represents coherent device memory, and the NIC cores repre-
sent the processing units of the NIC. The software flexibility
enables experimenting with data structure designs and com-
munication patterns since we are not restricted by the hard-
ware interfaces of existing NICs. We believe the software-
initiated nature of NIC accesses does not change the host-NIC
interactions required to transfer packets; hardware-initiated
transfers would map to equivalent coherence protocol oper-
ations and show comparable interconnect performance.
To evaluate the PCIe and CC-NIC interfaces in isolation,

we focus on loopback performance. Prior work finds that
PCIe can contribute the majority of network TX/RX latency
observed by the end-host [32]. While these experiments ex-
clude Ethernet transmission, they demonstrate the most sig-
nificant component of overall latency.

To understand end-to-end throughput and core utilization,
we implement a CC-NIC Overlay interface atop a PCIe NIC.
With a PCIe NIC installed on the second socket, we utilize
overlay threads on the NIC socket to bridge between the CC-
NIC UPI interface and a PCIe NIC. These threads poll both
UPI TX and PCIe RX queues, copying packet data and writ-
ing descriptors between each respective pair of queues. This
allows applications running on the first socket to perform
network TX/RX via CC-NIC. While overlay packet forward-
ing adds latency and burns cores on the second CPU, it allows
us to measure application throughput and core utilization.

5 Evaluation
Our evaluation is guided by the following questions:
1. How does CC-NIC perform relative to PCIe NICs? §5.2
2. What performance does CC-NIC achieve on a terabit UPI

interconnect? §5.3
3. What are the gains from optimizing metadata structures,

data accesses, and buffer management? §5.4
4. How does batching affect performance? §5.5
5. Does CC-NIC’s design increase coherence communica-

tion efficiency? §5.6
6. Can CC-NIC save CPU cores with a key-value store ap-

plication and TCP RPC stack? §5.7
7. How sensitive is the design to hardware prefetching,

interconnect bandwidth, and latency? §5.8, §5.9

ASPLOS ’24, April 27–May 1, 2024, San Diego, California, USA Schuh et al.

5.1 Evaluation Setup
We use two server platforms with the following specifica-
tions. The ICX server is a dual-CPU Intel Ice Lake Xeon
Gold 6346, running at 3.1GHz, with PCIe 4.0 support and
3×11.2GT/s UPI links. Each ICX CPU has 16 cores (32 hyper-
threads), 1.25MB per-core L2, 36MBLLC, and 12×16GBDDR4
at 3200MHz. This server contains two PCIe NICs, an Intel
E810-2CQDA2 (E810) and Nvidia ConnectX-6 Dx MT42822
(CX6), both 2×100GbE devices. Our SPR server contains dual
Intel Sapphire Rapids CPUs, running at 2.0GHz, with PCIe
5.0 support and 16GT/s UPI. Each SPR CPU has 56 cores (112
hyperthreads), a 2MB per-core L2 cache, 105MB LLC, and
8 × 64GB DDR5 at 4800MHz.
We apply these two server platforms to evaluate the fol-

lowing comparison points:
• CC-NIC on ICX (UPI). We deploy CC-NIC on the ICX
server to compare UPI- and PCIe-based NIC communica-
tion on the same CPU platform.

• CX6, E810 on ICX (PCIe). For our PCIe NIC measure-
ments on the ICX server, we follow the vendor-published
system and driver configuration steps [18, 34] and ver-
ify that packet-forwarding performance matches these
official DPDK performance reports. We enable standard
platform-level optimizations such as DDIO [15].

• CC-NIC on SPR (UPI). To measure CC-NIC’s perfor-
mance across a terabit coherent interconnect, we also
deploy CC-NIC on the SPR platform with the above speci-
fications.

• Unoptimized UPI on SPR, ICX. To demonstrate coher-
ent NIC performance without CC-NIC’s design features,
we implement the Intel E810 NIC interface over the UPI
interconnect. We use writeback memory and caching ac-
cesses but maintain the E810 data structure layout and
register-based signaling. This baseline scenario represents
a case where future coherent NICs apply the same soft-
ware interface as today’s PCIe NICs.

Loopback setup. We implement a traffic generator using
DPDK [4] to evaluate both CC-NIC and PCIe NICs. Each NIC
serves as a loopback between pairs of TX and RX queues.
Each application thread configures private queues, allocates
TX buffers, andwrites full, timestamped payloads for each TX
packet burst; it polls RX queues and accesses each RX payload
before freeing the buffer. This is more work per packet than
minimal RX-TX forwarding due to payload accesses and
separate TX and RX flows.We vary TX rates from one inflight
packet to the maximum sustainable rate and measure median
roundtrip latency and RX data throughput.

Overlay setup. We use the CC-NIC Overlay (§4) to eval-
uate per-thread application throughput with the CC-NIC
interface. An application uses the CC-NIC UPI interface for

0 100 200 300 400
64B Throughput [Mpps]

0.0

2.5

5.0

7.5

10.0

La
te

nc
y

[μ
s]

0 10 20 30 40
1.5KB Throughput [Mpps]

0

5

10

15

20

La
te

nc
y

[μ
s]

CC-NIC UPI unopt PCIe E810 PCIe CX6

Figure 11. Throughput-latency curves, comparing CC-NIC,
unoptimized UPI, and PCIe loopback performance on the
ICX server, for 64B and 1.5KB packet sizes

TX/RX; remote-socket overlay threads transfer packets be-
tween corresponding PCIe NIC queues. As a baseline, the
application interfaces directly with the same socket-local
PCIe NIC. While the PCIe NIC limits throughput in both
cases, this setup allows us to compare CPU utilization.

5.2 Performance Comparison Overview
Figure 11 shows a comparison of four host-NIC interfaces on
the ICX server: the CX6 and E810 PCIe NICs, a naive imple-
mentation of the E810 interface over UPI, and CC-NIC. These
results show that CC-NIC provides a significant opportunity
for latency improvement and higher throughput over PCIe.
CC-NIC’s minimum latency is 77% and 86% lower than that
of the CX6 and E810. As detailed in §5.3, CC-NIC’s latency
reduction over the CX6 is more significant when considering
latency under load for both large and small packets. CC-NIC
also achieves a 1.7× and 4.3× higher peak packet rate than
the E810 and CX6. With 1.5KB packets, we observe 1.8×
higher data throughput over both PCIe NICs.

The unoptimized UPI (unopt) scenario shows that a coherence-
optimized design is critical. This case applies the E810 inter-
face across UPI and achieves lower 64B packet rates than the
native PCIe E810 despite a higher-bandwidth interconnect.
Relative to CC-NIC, this version shows 79% lower through-
put and 2.1× higher minimum latency.

5.3 Detailed Performance Results
This section compares CC-NIC, CX6, and E810 results on
the ICX platform. Figure 12 shows throughput-latency pro-
files for CC-NIC and CX6, with 64B and 1.5KB packet sizes.
We also measure CC-NIC on the SPR platform’s terabit UPI
interconnect, shown in Figure 13.

Latency. CC-NIC demonstrates low minimum latency
and loaded latency relative to both PCIe NICs. We measure
a minimum loopback latency of 490ns (ICX) and 650ns (SPR)
versus a best-case PCIe latency of 2116ns (CX6) and 3809ns
(E810). The latency difference between CC-NIC and the CX6
is more significant when the load is increased. At 80% load,
CC-NIC’s 64B latency is 88% lower than the CX6 (85% lower

CC-NIC: a Cache-Coherent Interface to the NIC ASPLOS ’24, April 27–May 1, 2024, San Diego, California, USA

0 100 200 300 400
Throughput [Mpps]

0.0

0.5

1.0

1.5

2.0

La
te

nc
y

[μ
s]

CC-NIC UPI (64B)

0 20 40 60 80
Throughput [Mpps]

0

2

4

6

8

La
te

nc
y

[μ
s]

CX6 PCIe (64B)

0 10 20 30 40
Throughput [Mpps]

0

2

4

La
te

nc
y

[μ
s]

CC-NIC UPI (1.5KB)

0 5 10 15 20
Throughput [Mpps]

0

5

10

15

La
te

nc
y

[μ
s]

CX6 PCIe (1.5KB)

Core Count
1
2
4
8
12
16

Figure 12. Loopback throughput-latency curves for CC-NIC and CX6 on the ICX server, with 64B and 1.5KB packet sizes.

0 400 800 1200 1600
Throughput [Mpps]

0

1

2

3

4

La
te

nc
y

[μ
s]

SPR UPI (64B)

0 25 50 75 100
Throughput [Mpps]

0

2

4

6

La
te

nc
y

[μ
s]

SPR UPI (1.5KB)
Core Count

1
4
8
16
24
32
56

Figure 13. Loopback throughput-latency curves for CC-NIC
on Sapphire Rapids UPI, with 64B and 1.5KB packet sizes.

than the E810). With large 1.5KB packets, minimum latency
is 76% lower than the CX6 (87% lower than the E810). As
with small packets, at 80% load, CC-NIC achieves a greater
improvement over PCIe: 88% for both CX6 and E810.

Throughput. On the ICX server, CC-NIC demonstrates
a maximum 64B packet rate of 330Mpps (169Gbps). This is a
substantially higher packet rate than PCIe NICs on the same
platform: 192Mpps (E810) and 76Mpps (CX6). For 1.5KB pack-
ets, CC-NIC reaches 403Gbps out of a maximum 443Gbps
measured data throughput on the interconnect; both PCIe
NICs reach their rated 200Gbps line rate on the 252Gbps PCIe
link. While the ICX server core count limits CC-NIC’s 64B
packet rate, the SPR results demonstrate full interconnect
utilization. The SPR CC-NIC loopback reaches a maximum
packet rate of 1520Mpps (778Gbps) with 64B packets. Includ-
ing the descriptor metadata transferred with each packet,
this corresponds to 96% of the measured maximum UPI data
throughput. For 1.5KB packets, we measure 986Gbps data
throughput or 97% of UPI throughput.

Core count. With 64B packets, 48 of 56 (SPR) and 14 of 16
(ICX) host cores are required to reach 90% of the maximum
rate. Large 4KB packets decrease the core counts to 18 (SPR)
and 8 (ICX). Each core accesses full TX/RX payloads, placing
a higher burden on the host cores than workloads such as
forwarding with header-only accesses. We measure core
utilization with application workloads in §5.7.

5.4 Design Feature Analysis
Next, we evaluate the impact of CC-NIC’s design features.
Recent work analyzing data center workloads in the context
of transport protocols [31] and data stores [46] emphasize

0 1000
Throughput [Mpps]

0

2

4

La
te

nc
y

[μ
s]

(a) Signaling

Inline
Reg

0 1000
Throughput [Mpps]

0

2

4

La
te

nc
y

[μ
s]

(b) Descriptors

Opt
Pack
Pad

Figure 14. Throughput and latency varying (a) register and
inline signaling options, and (b) descriptor layouts.

0 500 1000 1500
Throughput [Mpps]

0

2

4
La

te
nc

y
[μ

s]
Optimized design
Buf recycling removed
Small bufs removed
NIC buf management removed

Figure 15. Performance impact of CC-NIC buffer manage-
ment features.

the prevalence of small packets. Thus, we examine small
packet workloads and evaluate packet-handling efficiency.

Signal Inlining. Figure 14a shows the impact of inlining
signals into the descriptor ring versus maintaining external
queue tail doorbell registers. For 64B packets, inlined signals
reduce minimum latency by 37% and increase maximum
packet rate by 1.3×.

Descriptor Layout. Using the same workload, we evalu-
ate different descriptor layout choices: the optimized layout
(§3.2), 16B descriptors equivalent to the E810 NIC (pack case),
and the same format with each descriptor padded to a cache
line (pad). Figure 14b shows the results. Due to the 64B granu-
larity of UPI cache transfers and the direct descriptor polling
required for inlined signals, memory layout substantially af-
fects performance. Cache-aligning (padding) each descriptor
achieves low latency by avoiding thrashing. Packing single-
ton 16B descriptors into a cache line improves throughput
by 2.9× but causes thrashing as the host and NIC each access
multiple signals and metadata fields per line. Finally, the
optimized descriptor layout incorporates a single signal and
a group of descriptors per cache line. This layout achieves a
3.0× throughput improvement while matching the best-case
minimum latency of the padded case.

ASPLOS ’24, April 27–May 1, 2024, San Diego, California, USA Schuh et al.

1 2 4 8 16 32
TX Batch Size

0.0

0.5

1.0

%
 M

ax
 p

ps

(a) TX Batching

1 2 4 8 16 32
RX Batch Size

0.0

0.5

1.0

%
 M

ax
 p

ps

(b) RX Batching

CC-NIC
E810

Figure 16. 64B packet rate relative to maximum, varying
TX (a) and RX (b) batch sizes, for CC-NIC and E810 (PCIe).

Buffer Management Optimizations. In Figure 15, we
evaluate the performance impact of buffer management op-
timizations. We begin with the optimized design, removing
features sequentially. All measurements use 56 SPR cores
and 64B packets. First, we disable same-socket buffer reuse
and nonsequential allocation (§3.3), so all allocations and
frees access the buffer pool, not the buffer reuse cache for
each core. This is representative of a workload where TX
buffers are retained by the application after transmission, not
returned to the buffer pool. We observe a 20% throughput
reduction in this case. Second, we disable the small buffer
optimization (§3.3), so each 64B packet is written into a sep-
arate 4KB buffer. This results in a larger shared memory
footprint and a further 37% throughput decrease. Finally,
we disable shared access to the buffer pool (§3.4), instead
posting and freeing buffers exclusively on the host side. This
change prevents the NIC from adaptively filling RX descrip-
tors based on the available burst count and increases host
bookkeeping, decreases maximum throughput by 46%, and
increases latency by 1.3×. This final case is comparable to
PCIe NIC buffer management.

5.5 Batching Effects
Batching is critical to achieving high NIC packet rates. For
PCIe NICs, TX batching enables submitting multiple packets
with oneMMIO doorbell; larger batch sizes reduce the rate of
MMIO operations. For CC-NIC, TX batching allows multiple
descriptors to be transferred within a single cache line. Host-
side RX batching primarily affects access patterns on the
descriptor ring and buffer pool, determining whether buffers
are handled individually or in bulk. Figure 16 shows 64B
packet rate at a given host TX/RX batch size, relative to the
highest achievable packet rate. We define batch size as the
maximum number of buffers transmitted per polling loop
iteration, i.e., the TX/RX burst count used in DPDK APIs. We
repeat the experiment with CC-NIC and the E810 PCIe NIC,
both on the ICX server.We vary the TX batch sizewhile using
a fixed RX batch size of 32, and vice versa. For TX, CC-NIC
achieves higher packet rates with lower batching factors; the
unbatched case shows 27% of peak throughput for CC-NIC
versus 12% for the E810. Because CC-NIC uses lightweight
per-cache-line signals instead of MMIO doorbells, the need

CC-NIC
Batch

Unopt
Batch

CC-NIC
Single

Unopt
Single

0

2

4

6

Co
un

t p
er

 T
X-

RX

1.3 1.5

2.9

5.4

0.3
0.8

2.8

4.9

READ
RFO

Figure 17. NIC remote accesses per TX-RX loopback,
batched and singular descriptor cases.

for large batching factors is reduced; CC-NIC achieves peak
packet rates when descriptor cache lines are filled. For poll-
mode RX, host-side batching is less crucial to performance
since the host does not perform PCIe MMIO accesses and
releases RX descriptors lazily. Both NICs show significantly
less sensitivity to the RX batch factor: CC-NIC maintains
at least 93% of peak throughput across batch sizes, and the
E810 achieves at least 63%.

5.6 Interconnect Communication
To measure the coherence communication required to fa-
cilitate host-NIC interactions, we measure offcore response
PMU counters of the NIC CPU. As an additional comparison
point, we deploy NIC and host threads on a single CPU. This
setting eliminates UPI communication altogether, revealing
the interconnect contribution to latency and bandwidth over-
heads.

Remote Access Counters. We measure offcore response
PMU counters of the NIC and host CPU to quantify intercon-
nect communication. Figure 17 compares the remote accesses
performed by CC-NIC and the unoptimized UPI baseline per
64B TX-RX loopback operation. The figure shows NIC CPU
accesses; due to the symmetric TX-RX design of CC-NIC,
we observe symmetric host-side access counts. Each remote
access consists of a read or read for ownership (RFO) inter-
connect operation. We evaluate singleton and fully-batched
(4 descriptors per cache line) cases. The batched case shows
a throughput-oriented workload, processing descriptors in
bursts of 8 and filling ring cache lines without wasted space.
The singleton case represents a low-throughput, low-latency
workload, where the host transmits one packet at a time
and immediately polls for completion status. This case maxi-
mizes contention on shared cache lines, with the host and
NIC accessing descriptors and signals simultaneously.
With the batched workload, CC-NIC performs one read

access per packet, plus one read and one RFO per descriptor
group (0.25 per packet). This suggests that CC-NIC effec-
tively amortizes metadata cache transfers. The unoptimized
UPI baseline, which uses register-based signaling, incurs one
additional read and two additional RFO accesses per descrip-
tor group. For the singular scenario, each individual packet
requires full cache-line transfers for the descriptor, packet

CC-NIC: a Cache-Coherent Interface to the NIC ASPLOS ’24, April 27–May 1, 2024, San Diego, California, USA

0 20 40 60
Throughput [Mpps]

0

1

2

3

La
te

nc
y

[μ
s]

Remote-socket NIC
Same-socket NIC

Figure 18. Single-thread 64B loopback performance, com-
paring CC-NIC thread running on local CPU versus cross-
UPI remote CPU.

PCIe Mops/s CC-NIC Mops/s Thread Count
KV store (ads) 37.0 42.3 16 → 8
KV store (geo) 17.8 17.9 8 → 4
TCP echo RPC 58.3 64.6 5 → 3

Table 2. Peak throughput and core count for KV Store and
TCP Echo RPC applications, comparing CX6 and CC-NIC
Overlay interfaces.

memory, and, in the unoptimized version, registers. When
we compare batched and singular cases, our results show the
importance of efficient descriptor cache-line layouts. Packing
multiple descriptors into one cache line (§3.2) significantly
reduces coherence communication, for both CC-NIC and the
unoptimized case. Comparing optimized and unoptimized
interface designs with the singleton workload, CC-NIC is
able to recycle locally-cached buffer memory (§3.3) and avoid
separate cache transfers for register signaling (§3.2). This
reduces interconnect communication, even in the presence
of contented host-NIC accesses.

Same-Socket Comparison. We deploy CC-NIC and host
threads on a single NUMA node to understand the contri-
bution of the UPI interconnect on loopback latency and
per-thread throughput. This setting exhibits host-NIC in-
teractions between local CPU cores, eliminating transfers
across the UPI physical link. Figure 18 shows one-thread 64B
loopback performance between host and CC-NIC threads
on the same SPR CPU, compared to the cross-UPI deploy-
ment used for all other results. Comparing both minimum
and loaded latencies shows that the interconnect accounts
for approximately 40-50% of TX-RX loopback latency. The
increased latency of cross-UPI accesses increases stalling for
the host application, which impacts maximum per-thread
throughput; the same-socket experiment shows 1.5× greater
per-thread throughput.

5.7 Application-Level Performance
Table 2 summarizes the thread count reduction enabled by
CC-NIC for the key-value store echo RPC applications dis-
cussed below. We compare the CC-NIC Overlay interface
(forwarding to the CX6 PCIe NIC) to the direct interface with
the CX6, both on the ICX platform.

0 5 10 15 20
Thread Count

0

20

40

Tp
ut

 [M
op

s/
s]

(a) Ads Distribution

0 2 4 6 8 10
Thread Count

0

10

20
(b) Geo Distribution

CC-NIC
UPI 1-1
UPI unopt
PCIe

Figure 19. Throughput versus thread count for key-value
store workloads, comparing CC-NIC Overlay and PCIe NIC
interfaces.

Key-Value Store Throughput. We implement a key-value
store following the design of CliqueMap [46], with DPDK’s
rte_hash table as the index. Server threads poll NIC RX
queues to handle get and set RPCs. Gets are zero-copy, apply-
ing multi-segment TX (DPDK extbuf) to submit the header
and object payload to the NIC. This requires two buffer ad-
dresses per TX descriptor, increasing host-NIC metadata but
avoiding object memcpy. We deploy the key-value store on
one ICX server with a CX6 NIC, plus two remote clients,
enough to saturate the server. We evaluate two production
object distributions from Google, Ads and Geo [46], limit-
ing sizes to a 9600B MTU (truncating the largest 0.01% of
Ads). Ads consists of smaller objects; 61% are less than 100B,
compared to 13% in Geo. For both, we evaluate 95% gets, 5%
sets on 1M objects, following a Zipf access pattern with a
coefficient of 0.75.
Figure 19 shows key-value request throughput with CC-

NIC andCX6 interfaces across the range of application thread
counts (hyperthreading enabled). Since all scenarios perform
TX/RX via the CX6NIC, peak throughput is determined by its
packet rate. However, the CC-NIC Overlay interface achieves
peak throughput with fewer application threads. For Ads, 8
threads saturate throughput with the CC-NIC Overlay inter-
face, compared to 16 with the CX6. The high rate of small
objects stresses the host-NIC interface, especially with multi-
segment TX. The Geo workload demonstrates a reduction
of 8 to 4 threads, showing core savings with a distribution
skewed towards larger objects. The UPI 1-1 series uses one
overlay thread per application thread. Relative to the direct
CX6 interface, the same number of threads access PCIe NIC
queues, but this work is offloaded from application threads.
This increases per-thread throughput up to 31%, but the over-
lay thread count limits performance. Comparing CC-NIC to
the unoptimized UPI (unopt) baseline shows the benefits of
coherence-optimized buffer management: CC-NIC shows a
savings of 3 (Ads) and 2 (Geo) threads at peak throughput.

TCP RPC Throughput. We evaluate a TCP RPC server
built using TAS [22], a high-performance userspace TCP
service. We run the RPC server implemented by the TAS
authors, a basic TCP application dynamically linked to TAS,
overriding the kernel sockets interface. A set of userspace

ASPLOS ’24, April 27–May 1, 2024, San Diego, California, USA Schuh et al.

CC-NIC
64B

CC-NIC
1.5K

Unopt
64B

Unopt
1.5KB

0.0

0.5

1.0

1.5

Re
la

tiv
e

pp
s

Both on
Host on
NIC on

Figure 20. Impact of SPR hardware prefetching on 64B
packet throughput, relative to the prefetching-disabled case.

TAS fast-path threads to handle the TCP data plane via
DPDK, achieving state-of-the-art TCP performance. We re-
place TAS’s fast-path PCIe TX/RX with the CC-NIC Overlay
to evaluate the benefits of a coherent NIC interface. We do
not offload any aspects of TAS but instead deploy a drop-in
replacement NIC interface.
We evaluate a workload of 64B echo RPCs, deploying

one application thread and measuring the number of TAS
fast-path threads required to achieve 95% peak throughput.
In the PCIe baseline case, we run all application and TAS
threads on the CX6’s local socket CPU. For the CC-NIC
Overlay case, we deploy overlay threads on the CX6 socket
and all TAS and application threads on the remote CPU. On
a second machine, we run the client application with all
threads and a total of 96 flows, enough to saturate the server.
Table 2 compares RPC throughput with the CC-NIC Overlay
and direct CX6 interfaces. Applying the CC-NIC Overlay
results in NIC saturation with 3 TAS threads versus 5 with
the PCIe interface. The CX6 case shows slightly lower peak
throughput due to internal TAS overheads, which increase
with the fast-path thread count. Both scenarios are limited
to the CX6 NIC packet rate.

5.8 Sensitivity to Hardware Prefetching
In Figure 20, we compare the impact of hardware prefetching
on packet rates for CC-NIC and the unoptimized UPI base-
line, on the SPR platform. We enable prefetching on the host,
NIC, and both CPUs, measuring packet rate relative to the
case of prefetching disabled. We find that the optimized CC-
NIC interface is able to benefit from host-side prefetching for
small-packet workloads: prefetching increases packet rate
1.2× for 64B packets. This gain comes from the CPU’s DCU
IP Prefetcher and affects packet buffer accesses in particular.
Both designs achieve maximum throughput with prefetching
enabled on the host CPU only (we use this setting for all
other experiments). For the unoptimized interface design,
without CC-NIC’s locality-oriented buffer pool optimiza-
tions (§3.3), prefetching strictly decreases performance by
up to 7%. These differences suggest that the NIC interface
design dictates whether prefetching improves performance
or increases interconnect overheads.

200 250 300
Interconnect Lat [ns]

0

1000

2000

N
IC

 L
at

 [n
s]

CXL est.

(a) 64B Latency

0 40 80 120160
Interconnect Tput [GB/s]

0

50

100

N
IC

 T
pu

t [
M

pp
s]

(b) 1.5KB Throughput

CC-NIC
UPI unopt

Figure 21. Performance with reduced UPI throughput and
latency.

5.9 Sensitivity to Interconnect Performance
We analyze CC-NIC’s sensitivity to interconnect bandwidth
and latency by varying the NIC socket uncore frequency.
This allows us to study CC-NIC under reduced interconnect
performance. However, this approach results in pessimistic
measurements, as downclocking the uncore impacts purely
local access performance in addition to remote UPI accesses.
Across the range of supported uncore frequencies (maximum
is the default), we measure host-to-NIC-socket DRAM ac-
cess latency and read throughput and loopback performance
with CC-NIC and the unoptimized UPI interface. Figure 21
shows 64B packet loopback latency relative to access latency,
and 1.5KB packet throughput relative to interconnect data
throughput, measured on the SPR server.
According to the CXL Consortium, the expected access

latency for CXL-attached DRAM is 170-250ns [40]. This
range is corroborated by research on CXL.mem prototypes,
which finds that CXL.mem load latency is approximately
1.5× higher than cross-UPI remote DRAM [47]. In Figure 21a,
we observe that CC-NIC’s latency increase closely tracks the
increase in host-to-NIC interconnect access latency. With a
1.11× increase in interconnect latency to 211ns (middle of
the CXL range), CC-NIC loopback latency increases by 1.13×.
CC-NIC maintains its relative improvement over the unopti-
mized UPI interface, which incurs a 1.16× latency increase.
Figure 21b shows that performance is also stable over a range
of interconnect throughputs. 1.5KB loopback throughput
scales well and maintains a consistent improvement over the
unoptimized case. When interconnect throughput is set to a
minimum of 40%, CC-NIC throughput is 39%.

6 Discussion
Hardware DMA. Hardware bulk transfers, on both host

and NIC sides, can potentially increase efficiency over CPU
accesses. While our application-level results (§5.7) show that
CC-NIC can reduce core utilization without DMA, efficient
hardware transfers could benefit large-packet workloads.
On-chip DMA engines, such as Intel’s Data Streaming Accel-
erator [16], are one possible mechanism for CPU-initiated
bulk transfers. For device-initiated DMA, a CXL-attached
NIC could leverage both CXL.cache for metadata and small

CC-NIC: a Cache-Coherent Interface to the NIC ASPLOS ’24, April 27–May 1, 2024, San Diego, California, USA

packet transfers, plus CXL.io DMA for bulk packet opera-
tions.

Security and Isolation. We expect coherent host-device
interconnect standards to provide mechanisms for protecting
and isolating host resources. We expect that current tech-
niques to control PCIe DMA access to the host address space,
e.g., IOMMU translation, apply to coherent device accesses.
Likewise, the BAR space abstraction of current PCIe devices
offers a means of isolation by limiting host-device coherence
to a portion of the address space.

Network Function Workloads. While we studied work-
loads involving full packet access, cache-coherent NICs could
bring additional benefits formiddleboxworkloads like packet
switching. Packet-switching through a PCIe NIC incurs un-
needed interconnect andmemory bandwidth utilization. Even
if the application only operates on packet headers, the full
packet payload is still transferred to and from host memory.
In the case of DDIO, this may result in cache pollution. In-
stead, a coherent NIC may retain payloads in the NIC cache
while the host operates on the header, avoiding interconnect
transfers for packet data the host does not access.

7 Related Work
TinyNF [38], NIQ [7], PacketMill [6], and others [4, 8, 11, 19,
20, 22, 26, 42, 45] propose optimizations to the host software
interface of PCIe NICs through the elimination of driver
and stack overheads. Since our work maintains the packet
queue model, these optimizations carry to the software stack
running atop a coherent NIC interface.

NanoPU [13], Direct CacheAccess [12], and Semi-Coherent
DMA [28] propose new CPU-NIC data paths. Like our work,
these systems demonstrate that tighter integration between
the NIC and CPU caches enables higher performance. Rather
than propose new data paths, our work leverages the faster
paths of an existing cache-coherent interconnect.
Scale-out NUMA [33], and Dagger [23] apply cache co-

herence in conjunction with new communication models
beyond NIC packet RX/TX. Scale-out NUMA enables remote
coherent access to host memory by integrating an RDMA-
like interface with the cache hierarchy. Dagger applies a UPI-
attached FPGA as a target for offloaded RPCs with coherent
host access. Our work focuses specifically on optimizing the
producer-consumer data transfers associated with packet
RX/TX. However, these systems and others [5, 21, 29, 30, 53]
apply similar producer-consumer interactions, e.g., RDMA
work queues. In the context of a coherent interconnect, the
design we propose applies to these data structures.
Prior work on microkernel and shared-memory message

passing [1, 41], as well as IO virtualization [51, 52], describes
optimizations for producer-consumer accesses in the shared
memory setting. With coherent host-device interconnects,
these considerations (e.g., optimizing for cache-to-cache

transfers) become newly important to host-device interac-
tions. The specific context of NIC interactions presents new
opportunities for optimization and requires a specialized
design. For instance, while existing message queue systems
optimize for cache alignment, applying it to NIC RX queues
requires broader changes to the buffer management system.
CC-NIC applies a new combination of design decisions to
optimize for the unique properties of both host-device co-
herence and NIC TX/RX descriptor communication.

Pond [24] and DirectCXL [10] explore CXL as a means of
providing disaggregated memory resources. Their analysis
of CXL datapath performance pertains to CXL-attached NIC
interactions.

8 Conclusion
This paper makes a case for redesigning the host-NIC soft-
ware interface in the context of emerging cache-coherent
interconnects. These interconnects are capable of high per-
formance, but the interface design of current PCIe NICs
performs poorly in the coherent setting. We present CC-NIC,
a NIC interface designed to benefit from cache coherence.
Our results, modeling CC-NIC over the coherent UPI in-
terconnect, demonstrate high throughput, low latency, and
CPU-efficient host-NIC communication.

Acknowledgments
We would like to thank the anonymous reviewers and our
shepherd, Michio Honda. This work was supported in part by
NSF grant CNS-2006349 and ACE, one of the seven centers
in JUMP 2.0, a Semiconductor Research Corporation (SRC)
program sponsored by DARPA.

References
[1] B. N. Bershad, T. E. Anderson, E. D. Lazowska, and H. M. Levy. User-

Level Interprocess Communication for Shared Memory Multiproces-
sors. ACM Trans. Comput. Syst., 9(2):175–198, may 1991.

[2] CCIX Consortium Inc. CCIX Base Specification 1.0. https://www.
ccixconsortium.com/library/specification/.

[3] Compute Express Link Consortium Inc. CXL 3.0 Specification. https:
//www.computeexpresslink.org/download-the-specification.

[4] DPDK Project. Data Plane Development Kit. https://www.dpdk.org/.
[5] A. Dragojević, D. Narayanan, M. Castro, and O. Hodson. FaRM: Fast

Remote Memory. In 11th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 14), pages 401–414, Seattle, WA, Apr.
2014. USENIX Association.

[6] A. Farshin, T. Barbette, A. Roozbeh, G. Q. Maguire Jr., and D. Kostić.
PacketMill: Toward per-Core 100-Gbps Networking. In Proceedings
of the 26th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS ’21, page
1–17, New York, NY, USA, 2021. Association for Computing Machinery.

[7] M. Flajslik and M. Rosenblum. Network Interface Design for Low
Latency Request-Response Protocols. In 2013 USENIX Annual Technical
Conference (USENIX ATC 13), pages 333–346, San Jose, CA, June 2013.
USENIX Association.

[8] S. Gallenmüller, P. Emmerich, F. Wohlfart, D. Raumer, and G. Carle.
Comparison of Frameworks for High-Performance Packet IO. In Pro-
ceedings of the Eleventh ACM/IEEE Symposium on Architectures for

https://www.ccixconsortium.com/library/specification/
https://www.ccixconsortium.com/library/specification/
https://www.computeexpresslink.org/download-the-specification
https://www.computeexpresslink.org/download-the-specification
https://www.dpdk.org/

ASPLOS ’24, April 27–May 1, 2024, San Diego, California, USA Schuh et al.

Networking and Communications Systems, ANCS ’15, page 29–38, USA,
2015. IEEE Computer Society.

[9] Gen-Z Consortium. Gen-Z Specifications. https://genzconsortium.org/
specifications/.

[10] D. Gouk, S. Lee, M. Kwon, and M. Jung. Direct Access, High-
PerformanceMemory Disaggregation with DirectCXL. In 2022 USENIX
Annual Technical Conference (USENIX ATC 22), pages 287–294, Carls-
bad, CA, July 2022. USENIX Association.

[11] S. Han, K. Jang, A. Panda, S. Palkar, D. Han, and S. Ratnasamy. SoftNIC:
A Software NIC to Augment Hardware. Technical Report UCB/EECS-
2015-155, EECS Department, University of California, Berkeley, May
2015.

[12] R. Huggahalli, R. Iyer, and S. Tetrick. Direct cache access for high
bandwidth network i/o. In 32nd International Symposium on Computer
Architecture (ISCA’05), pages 50–59, 2005.

[13] S. Ibanez, A. Mallery, S. Arslan, T. Jepsen, M. Shahbaz, C. Kim, and
N. McKeown. The nanoPU: A Nanosecond Network Stack for Data-
centers. In 15th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 21), pages 239–256. USENIX Association, July
2021.

[14] Intel Corporation. An Introduction to the Intel QuickPath Intercon-
nect. https://www.intel.ca/content/dam/doc/white-paper/quick-path-
interconnect-introduction-paper.pdf.

[15] Intel Corporation. Intel Data Direct I/O Technology. https://www.
intel.com/content/www/us/en/io/data-direct-i-o-technology.html.

[16] Intel Corporation. Intel Data Streaming Accelerator Architecture
Specification. https://cdrdv2-public.intel.com/671116/341204-intel-
data-streaming-accelerator-spec.pdf.

[17] Intel Corporation. Intel Memory Latency Checker v3.9a. https:
//www.intel.com/content/www/us/en/developer/articles/tool/intelr-
memory-latency-checker.html.

[18] Intel DPDK Validation Team. Intel Ethernet Performance Report with
DPDK 21.11. http://fast.dpdk.org/doc/perf/DPDK_21_11_Intel_NIC_
performance_report.pdf.

[19] E. Jeong, S. Wood, M. Jamshed, H. Jeong, S. Ihm, D. Han, and K. Park.
mTCP: a Highly Scalable User-level TCP Stack for Multicore Systems.
In 11th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 14), pages 489–502, Seattle, WA, Apr. 2014. USENIX
Association.

[20] A. Kalia, M. Kaminsky, and D. Andersen. Datacenter RPCs can be
General and Fast. In 16th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 19), pages 1–16, Boston, MA, Feb.
2019. USENIX Association.

[21] A. Kalia, M. Kaminsky, and D. G. Andersen. Using RDMA Efficiently
for Key-Value Services. In Proceedings of the 2014 ACM Conference on
SIGCOMM, SIGCOMM ’14, page 295–306, New York, NY, USA, 2014.
Association for Computing Machinery.

[22] A. Kaufmann, T. Stamler, S. Peter, N. K. Sharma, A. Krishnamurthy, and
T. Anderson. TAS: TCP Acceleration as an OS Service. In Proceedings
of the Fourteenth EuroSys Conference 2019, EuroSys ’19, New York, NY,
USA, 2019. Association for Computing Machinery.

[23] N. Lazarev, S. Xiang, N. Adit, Z. Zhang, and C. Delimitrou. Dagger:
Efficient and fast rpcs in cloud microservices with near-memory recon-
figurable nics. In Proceedings of the 26th ACM International Conference
on Architectural Support for Programming Languages and Operating Sys-
tems, ASPLOS ’21, page 36–51, New York, NY, USA, 2021. Association
for Computing Machinery.

[24] H. Li, D. S. Berger, L. Hsu, D. Ernst, P. Zardoshti, S. Novakovic, M. Shah,
S. Rajadnya, S. Lee, I. Agarwal, M. D. Hill, M. Fontoura, and R. Bianchini.
Pond: CXL-Based Memory Pooling Systems for Cloud Platforms. In
Proceedings of the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 2,
ASPLOS 2023, page 574–587, New York, NY, USA, 2023. Association
for Computing Machinery.

[25] M. Liu, T. Cui, H. Schuh, A. Krishnamurthy, S. Peter, and K. Gupta.
Offloading Distributed Applications onto SmartNICs Using IPipe. In
Proceedings of the ACM Special Interest Group on Data Communication,
SIGCOMM ’19, page 318–333, New York, NY, USA, 2019. Association
for Computing Machinery.

[26] M. Marty, M. de Kruijf, J. Adriaens, C. Alfeld, S. Bauer, C. Contavalli,
M. Dalton, N. Dukkipati, W. C. Evans, S. Gribble, N. Kidd, R. Kononov,
G. Kumar, C. Mauer, E. Musick, L. Olson, E. Rubow, M. Ryan, K. Spring-
born, P. Turner, V. Valancius, X. Wang, and A. Vahdat. Snap: A Micro-
kernel Approach to Host Networking. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles, SOSP ’19, page 399–413,
New York, NY, USA, 2019. Association for Computing Machinery.

[27] Marvell. Marvell LiquidIO III. https://www.marvell.com/content/dam/
marvell/en/public-collateral/embedded-processors/marvell-liquidio-
III-solutions-brief.pdf.

[28] S. Min, M. Alian, W.-M. Hwu, and N. S. Kim. Semi-coherent dma: An
alternative i/o coherency management for embedded systems. IEEE
Computer Architecture Letters, 17(2):221–224, 2018.

[29] C. Mitchell, Y. Geng, and J. Li. Using One-Sided RDMA Reads to Build a
Fast, CPU-Efficient Key-Value Store. In 2013 USENIX Annual Technical
Conference (USENIX ATC 13), pages 103–114, San Jose, CA, June 2013.
USENIX Association.

[30] C. Mitchell, K. Montgomery, L. Nelson, S. Sen, and J. Li. Balancing
CPU and Network in the Cell Distributed B-Tree Store. In 2016 USENIX
Annual Technical Conference (USENIX ATC 16), pages 451–464, Denver,
CO, June 2016. USENIX Association.

[31] B. Montazeri, Y. Li, M. Alizadeh, and J. Ousterhout. Homa: A Receiver-
Driven Low-Latency Transport Protocol Using Network Priorities. In
Proceedings of the 2018 Conference of the ACM Special Interest Group
on Data Communication, SIGCOMM ’18, page 221–235, New York, NY,
USA, 2018. Association for Computing Machinery.

[32] R. Neugebauer, G. Antichi, J. F. Zazo, Y. Audzevich, S. López-Buedo,
and A. W. Moore. Understanding PCIe Performance for End Host
Networking. In Proceedings of the 2018 Conference of the ACM Special
Interest Group on Data Communication, SIGCOMM ’18, page 327–341,
New York, NY, USA, 2018. Association for Computing Machinery.

[33] S. Novakovic, A. Daglis, E. Bugnion, B. Falsafi, and B. Grot. Scale-out
NUMA. In Proceedings of the 19th International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
ASPLOS ’14, page 3–18, New York, NY, USA, 2014. Association for
Computing Machinery.

[34] NVIDIA Corporation. NVIDIA Mellanox NICs Performance Re-
port with DPDK 21.11. http://fast.dpdk.org/doc/perf/DPDK_21_11_
Mellanox_NIC_performance_report.pdf.

[35] NVIDIA Corporation. NVIDIA NVSwitch Technical Overview. https:
//images.nvidia.com/content/pdf/nvswitch-technical-overview.pdf.

[36] OpenCAPI Consortium. OpenCAPI Specifications. https://opencapi.
org/technical/specifications/.

[37] PCI-SIG. PCI Express Specifications. https://pcisig.com/specifications/.
[38] S. Pirelli and G. Candea. A Simpler and Faster NIC Driver Model

for Network Functions. In 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20), pages 225–241. USENIX
Association, Nov. 2020.

[39] PK Gupta. Intel Xeon+FPGA Platform for the Data Center. https:
//reconfigurablecomputing4themasses.net/files/2.2%20PK.pdf.

[40] Prakash Chauhan and Mahesh Wagh. CXL Memory Chal-
lenges. https://hc34.hotchips.org/assets/program/tutorials/CXL/Hot%
20Chips%202022%20CXL%20MemoryChallenges.pdf.

[41] Y. Ren, G. Liu, V. Nitu, W. Shao, R. Kennedy, G. Parmer, T. Wood, and
A. Tchana. Fine-Grained Isolation for Scalable, Dynamic, Multi-tenant
Edge Clouds. In 2020 USENIX Annual Technical Conference (USENIX
ATC 20), pages 927–942. USENIX Association, July 2020.

[42] L. Rizzo. netmap: A Novel Framework for Fast Packet I/O. In 2012
USENIX Annual Technical Conference (USENIX ATC 12), pages 101–112,

https://genzconsortium.org/specifications/
https://genzconsortium.org/specifications/
https://www.intel.ca/content/dam/doc/white-paper/quick-path-interconnect-introduction-paper.pdf
https://www.intel.ca/content/dam/doc/white-paper/quick-path-interconnect-introduction-paper.pdf
https://www.intel.com/content/www/us/en/io/data-direct-i-o-technology.html
https://www.intel.com/content/www/us/en/io/data-direct-i-o-technology.html
https://cdrdv2-public.intel.com/671116/341204-intel-data-streaming-accelerator-spec.pdf
https://cdrdv2-public.intel.com/671116/341204-intel-data-streaming-accelerator-spec.pdf
https://www.intel.com/content/www/us/en/developer/articles/tool/intelr-memory-latency-checker.html
https://www.intel.com/content/www/us/en/developer/articles/tool/intelr-memory-latency-checker.html
https://www.intel.com/content/www/us/en/developer/articles/tool/intelr-memory-latency-checker.html
 http://fast.dpdk.org/doc/perf/DPDK_21_11_Intel_NIC_performance_report.pdf
 http://fast.dpdk.org/doc/perf/DPDK_21_11_Intel_NIC_performance_report.pdf
https://www.marvell.com/content/dam/marvell/en/public-collateral/embedded-processors/marvell-liquidio-III-solutions-brief.pdf
https://www.marvell.com/content/dam/marvell/en/public-collateral/embedded-processors/marvell-liquidio-III-solutions-brief.pdf
https://www.marvell.com/content/dam/marvell/en/public-collateral/embedded-processors/marvell-liquidio-III-solutions-brief.pdf
 http://fast.dpdk.org/doc/perf/DPDK_21_11_Mellanox_NIC_performance_report.pdf
 http://fast.dpdk.org/doc/perf/DPDK_21_11_Mellanox_NIC_performance_report.pdf
https://images.nvidia.com/content/pdf/nvswitch-technical-overview.pdf
https://images.nvidia.com/content/pdf/nvswitch-technical-overview.pdf
https://opencapi.org/technical/specifications/
https://opencapi.org/technical/specifications/
https://pcisig.com/specifications/
 https://reconfigurablecomputing4themasses.net/files/2.2%20PK.pdf
 https://reconfigurablecomputing4themasses.net/files/2.2%20PK.pdf
https://hc34.hotchips.org/assets/program/tutorials/CXL/Hot%20Chips%202022%20CXL%20MemoryChallenges.pdf
https://hc34.hotchips.org/assets/program/tutorials/CXL/Hot%20Chips%202022%20CXL%20MemoryChallenges.pdf

CC-NIC: a Cache-Coherent Interface to the NIC ASPLOS ’24, April 27–May 1, 2024, San Diego, California, USA

Boston, MA, June 2012. USENIX Association.
[43] L. Rizzo, P. Valente, G. Lettieri, and V. Maffione. PSPAT: Software

packet scheduling at hardware speed. Computer Communications, 120,
02 2018.

[44] H. N. Schuh, W. Liang, M. Liu, J. Nelson, and A. Krishnamurthy. Xenic:
SmartNIC-Accelerated Distributed Transactions. In Proceedings of
the ACM SIGOPS 28th Symposium on Operating Systems Principles,
SOSP ’21, page 740–755, New York, NY, USA, 2021. Association for
Computing Machinery.

[45] L. Shalev, J. Satran, E. Borovik, and M. Ben-Yehuda. IsoStack—Highly
Efficient Network Processing on Dedicated Cores. In 2010 USENIX
Annual Technical Conference (USENIX ATC 10). USENIX Association,
June 2010.

[46] A. Singhvi, A. Akella, M. Anderson, R. Cauble, H. Deshmukh, D. Gib-
son, M. M. K. Martin, A. Strominger, T. F. Wenisch, and A. Vahdat.
CliqueMap: Productionizing an RMA-Based Distributed Caching Sys-
tem. In Proceedings of the 2021 ACM SIGCOMM 2021 Conference, SIG-
COMM ’21, page 93–105, New York, NY, USA, 2021. Association for
Computing Machinery.

[47] Y. Sun, Y. Yuan, Z. Yu, R. Kuper, I. Jeong, R. Wang, and N. S. Kim.
Demystifying CXL Memory with Genuine CXL-Ready Systems and

Devices, 2023.
[48] The Linux Kernel Archives. Linux Base Driver for the Intel Ether-

net Controller 700 Series. https://www.kernel.org/doc/html/latest/
networking/device_drivers/ethernet/intel/i40e.html.

[49] Universal Chiplet Interconnect Express. UCIe 1.0 Specification. https:
//www.uciexpress.org/specification.

[50] Universal Chiplet Interconnect Express. UCIe 1.0 Specification. https:
//www.uciexpress.org/specification.

[51] Virtio. Libvirt Virtualization API. https://wiki.libvirt.org/Virtio.html.
[52] VMWare Incorporated. Performance Evaluation of VMXNET3 Virtual

Network Device. https://www.vmware.com/pdf/vsp_4_vmxnet3_perf.
pdf.

[53] X. Wei, J. Shi, Y. Chen, R. Chen, and H. Chen. Fast In-Memory Trans-
action Processing Using RDMA and HTM. In Proceedings of the 25th
Symposium on Operating Systems Principles, SOSP ’15, page 87–104,
New York, NY, USA, 2015. Association for Computing Machinery.

[54] Y. Yuan, M. Alian, Y. Wang, R. Wang, I. Kurakin, C. Tai, and N. S.
Kim. Don’t forget the i/o when allocating your llc. In 2021 ACM/IEEE
48th Annual International Symposium on Computer Architecture (ISCA),
pages 112–125, 2021.

https://www.kernel.org/doc/html/latest/networking/device_drivers/ethernet/intel/i40e.html
https://www.kernel.org/doc/html/latest/networking/device_drivers/ethernet/intel/i40e.html
https://www.uciexpress.org/specification
https://www.uciexpress.org/specification
https://www.uciexpress.org/specification
https://www.uciexpress.org/specification
https://wiki.libvirt.org/Virtio.html
https://www.vmware.com/pdf/vsp_4_vmxnet3_perf.pdf
https://www.vmware.com/pdf/vsp_4_vmxnet3_perf.pdf

	Abstract
	1 Introduction
	2 Dissecting the PCIe Host-NIC Interface
	2.1 The Host-NIC Interface
	2.2 PCIe Microbenchmarks
	2.3 PCIe NIC Interface Design

	3 System Design for Coherent Interconnects
	3.1 Contrasting Coherent Interconnects and PCIe
	3.2 Metadata Structures
	3.3 Data Accesses
	3.4 Buffer Management

	4 CC-NIC Implementation
	5 Evaluation
	5.1 Evaluation Setup
	5.2 Performance Comparison Overview
	5.3 Detailed Performance Results
	5.4 Design Feature Analysis
	5.5 Batching Effects
	5.6 Interconnect Communication
	5.7 Application-Level Performance
	5.8 Sensitivity to Hardware Prefetching
	5.9 Sensitivity to Interconnect Performance

	6 Discussion
	7 Related Work
	8 Conclusion
	References

